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The far-field analytical expressions for the electromagnetic fields of amplitude of vector-vortex beams
having a Bessel–Gauss (BG) distribution propagating in free space are obtained based on the vector
angular spectrum and the method of stationary phase. The far-field energy flux distributions and the
beam quality by the power in the bucket (PIB) in the paraxial and nonparaxial regimes are investigated.
The PIB of the vector-vortex BG beams depend on the ratio of the waist width to wavelength and the
polarization order. The analyses show that vector-vortex BG beams with low polarization order have
better energy focusability in the far field.
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In recent years, cylindrically vector beams, such as
radially polarized beams, have received lots of atten-
tion because of their interesting properties and practi-
cal applications[1]. Various methods to achieve such an
inhomogeneous polarization state of a laser beam have
been exploited by many researchers[2]. Many propaga-
tion researches are conducted within and beyond the
paraxial regime. The nonparaxial derivation of radi-
ally polarized beams is performed and analyzed by the
method of Rayleigh-Sommerfeld diffraction integrals[3,4].
The paraxial propagation of radially polarized beams has
been dealt with as special cases of nonparaxial results[4].
Also paraxial propagation of radially polarized beams is
analyzed by a q-parameter approach in Ref. [5]. The an-
alytical vectorial structures of radially polarized beams in
free space have been investigated in Ref. [6]. The far field
energy flux distribution and the beam quality of cylin-
drically polarized vector beam in the nonparaxial regime
have been presented in Ref. [7]. Recently, vector-vortex
beams that have more than one rotation of the polariza-
tion have attracted increased interest[8,9]. Due to their
strange axial electric and magnetic field distributions,
vector-vortex beams may find interesting applications in
many areas like spectroscopy, high resolution microscopy,
optical tweezers, and quantum communication[10].

In this letter, by means of the full vector angular spec-
trum of electromagnetic wave and the method of sta-
tionary phase, the analytical expressions of the TE and
TM terms of vector-vortex beams having a Bessel–Gauss
(BG) distribution are presented in the far field. The cor-
responding energy flux distributions of the TE term, the
TM term, and power in the bucket (PIB) are also inves-
tigated in the far field.

The electric field distribution of a BG vector-vortex
beam at the z = 0 plane reads as
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where E0 is a constant, n is the polarization order of
vector-vortex beam which determines the spatial po-
larization pattern[9], Jn (·) is the nth order of Bessel
function of the first kind, w0 is the beam waist width,

r =
(

x2 + y2
)1/2

and ϕ = arctan(y/x) are the radial and
azimuthal coordinates, respectively. Obviously, radially
polarized beam (n = 1) is n = 1 vector-vortex beams.

According to the vectorial structure of non-paraxial
electromagnetic beam[11,12], an arbitrary polarized elec-
tromagnetic field can be expressed as the sum of two
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where −→r = x−→e x + y−→e y + z−→e z is the location vector;

m = px+qy+γz; b2 = p2+q2; γ =
(

1 − p2 − q2
)1/2

; k =
2π/λ with λ being the optical wavelength. Ax (p, q, γ)
and Ay (p, q, γ) are the x and y components of the vec-
tor angular spectrum, respectively, and are obtained by
Fourier transforming the x and y components of the ini-
tial electric field,
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Similarly, the magnetic field can also be expressed as

a sum of two terms,
−→
HTE (−→r ) and

−→
HTM (−→r )

[10,11]
,
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where ε and µ are the electric permittivity and mag-
netic permeability in medium, respectively. Since z is big
enough in the far regime, the condition of kr → ∞ and

r =
(

x2 + y2 + z2
)1/2

are satisfied and the contribution
of the evanescent waves to the far field can be omitted.
By employing the method of stationary phase[13−15], the
analytical electromagnetic fields of the TE mode for BG
vector-vortex beams in the far field may be given by
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with ZR = kw2
0 /2 is Rayleigh distance, ρ =

(

x2 + y2
)1/2

and In (·) is the modified Bessel function of
the first kind. Similarly, the analytical electromagnetic
fields of the TM mode for BG vector-vortex beams in the
far field may be given by
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Equations (5)–(8) constitute the basic results obtained
in this letter; they are applicable for both paraxial case
and non-paraxial case. As indicated by Eqs. (5)–(8), the
TE and TM terms of vectorial BG vector-vortex beams
are orthogonal to each other.

The energy flux distribution at the z = const plane are
given by the z component of their time average Poynting
vector. From Eqs. (5)–(6), the energy flux distribution
of the TE term for BG vector-vortex beams at the far
field z = const plane is given by
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where Re represents the real part, and the asterisk de-
notes complex conjugation. From Eqs. (7) and (8), the
energy flux distribution of the TM term for BG vector-
vortex beams at the far field z = const plane is given
by
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Equations (9) and (10) indicate that, radially polarized
beam (n = 1) has no TE component, which is agree with
the result of Ref. [6]. From Eqs. (9) and (10), the energy
flux distribution at the far field z = const plane turns out
to be
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As an alternative approach for characterizing the beam
quality in the far field, the PIB in the nonparaxial regime
is presented[16]

PIB =

∫ 2π

0
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0 〈Sz〉 rdrdθ
∫ 2π

0
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0
〈Sz〉 rdrdθ

, (12)

where a is the bucket radius. The larger value of PIB
means the better beam quality and the better energy
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focusability in the far field.
The energy flux distributions of the TE term, the TM

term, and the whole of a BG vector-vortex beam as well
as PIB in the far field are examined by using the for-
mulae derived above. As the BG vector-vortex beam is
determined by the w0/λ, and polarization order, we in-
vestigate the influence of these parameters on the energy
flux distributions. In our calculations, ε/µ is set to be
unity and the far-field reference plane is z=10zR. The
normalized TE term, TM term, and whole beam energy
flux distributions of the BG vector-vortex beams at the
plane z=10zR for beam order n= 2 are depicted by Fig.
1. The used parameter is w0 = 5λ, which corresponds to
the paraxial propagation case. The pattern of the energy
flux distributions of the TE and TM terms both possess
the two-lobe structure, which are similar to a pair of
eyes. Moreover, the energy flux distribution of the TE
term elongates parallel to the y-axis, and that of the TM
term elongates parallel to the x-axis. Since the number
of the lobes depends on the order n, one can judge that
the different polarization orders result in the different
beam lobe pattern.

Figure 2 shows the energy flux distributions of a BG
vector-vortex beam at the plane z=10zR in the paraxial
beyond region (w0 = 0.2λ), the other parameters are
the same as Fig. 1. Compared with Fig. 1, it can be
seen that the pattern of the lobes in the two figures is
similar. Additionally, the magnitude of the energy flux
of the TE term is slightly smaller than that of the TM
term in the nonparaxial region. Moreover, the size of
the pattern of the TE term is also distinctly smaller
than that of the TM term. When the TE and TM
terms superpose, the energy flux distribution of the BG
vector-vortex beam possesses twofold symmetry. The
reason for this phenomenon can be explained as: when
the BG vector-vortex beam diffracts in the far field for
the nonparaxial case, its TE term is a little larger than
TM term, so the energy flux intensity turns out two fold

Fig. 1. Energy flux distribution of a BG vector-vortex beam
in the plane z = 10zR. ω0 = 5λ, n = 2. (a) TE term, (b) TM
term, and (c) the whole beam.

Fig. 2. Energy flux distribution of BG vector-vortex beams
in the plane z=10zR. ω0 = 0.2λ, other parameters are the
same as Fig. 2. (a) TE term, (b) TM term, and (c) the whole
beam.

axis of symmetry. This result can be observed from the
difference in mathematical structures between Eqs. (9)
and (10).

Figure 3 exhibits 〈Sz〉 and PIB curves of vector-vortex
BG beams in the far field with different n. One can
see that the energy flux distribution of the whole beam
for beam order n = 1 is no longer doughnutlike and
has an intensity peak on the beam axis in the far field,
which is different from the result of Ref. [6]. Whereas,
the whole energy flux distribution retains a rotationally
symmetric dark hollow structure with a single bright ring
when n > 2. It can be alse seen that when the beam
order n increases, the far-field energy flux distributions
would diverge and spread out more rapidly. Figure 3(b)
shows that the value of PIB decrease with n increasing.
It implies that radial polarization compared with vector
vortex polarization has better beam quality and better
energy focusability in the far field, which is consistent
with the result of Fig. 3(a).

Figure 4(a) exhibits 〈Sz〉 and PIB curves of vector-
vortex BG beams in the far field with different w0/λ.
Note that the energy flux retains dark center, and its
profile expands with w0/λ increasing. From Fig. 4(b),
one can find that the value of PIB decreases with w0/λ
increasing. It implies that beam quality and energy fo-
cusability of BG vector-vortex beams decrease with w0/λ
increasing.

In conclusions, the energy flux distributions of the TE
term, the TM term, and the whole energy flux of BG
vector-vortex beams are derived in the far field which are
applicable to both nonparaxial case and paraxial case.
The results show that the asymmetry of energy flux spot
becomes apparent with increasing nonparaxiality. Ad-
ditionally, energy distributions spread more widely in
the far field when beam polarization order n increases.
And the value of PIB decreases with n and w0/λ in-
creasing. This work is also important to understand the
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Fig. 3. (a) 〈Sz〉 and (b) PIB curves of vector-vortex BG beams
in the far field with different n. w0 = 5λ, the other parame-
ters are the same as those in Fig. 1.

Fig. 4. (a) 〈Sz〉 and (b) PIB curves of vector-vortex BG beams
in the far field with different w0/λ. n = 2, the other param-
eters are the same as those in Fig. 1.

theoretical aspects of BG vector-vortex beam propaga-
tion and is beneficial to its practical application.
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